1.线圈匝数与磁感应强度的关系是什么?

2.单位换算"高斯"和"特斯拉"什么关系

3.磁铁磁性和地球磁场有关系吗

4.霍尔元件测磁场的磁场单位T跟KGS有啥关系啊

5.磁性和引力的关系

高斯 特斯拉_高斯特斯拉关系

磁力是由于电子或者是被磁化的物体在磁场中才受的力,如果物体不在磁场中,则不会受力。 而引力不同,“万有引力”是经典中的经典。一点都没有错,只要两个(或更多)物质不是以场的形式存在,不管距离的大小,一定会互相受到引力。 磁铁的成分是铁、钴、镍等.其原子结构特殊,原子本身具有磁矩. 一般的这些矿物分子排列混乱.磁区互相影响就显不出磁性,但是在外力(如磁场)导引下分子排列方向趋向一致,就显出磁性。 磁铁只是一个通称,是泛指具有磁性的东西,实际的成分不一定包含铁。较纯的金属态的铁本身没有永久磁性,只有靠近永久磁铁才会感应产生磁性。一般的永久磁铁里面加了其他杂质元素(例如碳)来使磁性稳定下来。铁是常见的带磁性元素,但是许多其他元素具有更强的磁性,像强力磁铁很多就是铷铁硼混合而成的. 为什么不能吸引铝?好象是因为铝是抗磁性物质,不能被磁化,具体原因记不清了。 下面这段是拷贝来的,有兴趣就看看吧~ 地磁场 geomagnetic field 从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。 地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。 近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即10高斯。1960年决定采用特斯拉作为国际测磁单位,1高斯=10特斯拉(T),1伽马=10特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。 地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。 地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。 地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。 地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义

线圈匝数与磁感应强度的关系是什么?

磁场是由电荷定向运动产生的,感应电流是由变化的磁场引起的,简单的说就是:“变化的电产生磁,变化的磁产生电”,变化的电场和变化的磁场共同构成一个不可分离的电磁场。电和磁的关系是相互激励,同时出现,通常称之为电磁波。电磁波按频率的不同可以分为无线电波、红外线、可见光、紫外线、X射线、Y射线、宇宙射线等。

磁场是由电流激发产生的,电流周围都存在磁场,电荷的定向运动形成电流,所以运动的电荷也能激发磁场

感应电流产生的本质是磁场的变化,准确的说是磁通量的变化产生了电流

电和磁能够相互转化,变化的磁场产生感应电流,而电流又能激发产生磁场

单位换算"高斯"和"特斯拉"什么关系

在相同物体上是线圈匝数越多,磁感应越强,这是匝数增加时,此时叠加的磁感也会相应增加。

设定线圈使用的铜线直径不变,匝数越多,那么它的电阻也就越大,根据电压=电流*电阻的公式,设定电压不变,那么结果就是电阻越大,电流越小。

根据功率=电压*电流的公式,同样设定电压不变,结果就是电流越小,功率越小,电磁铁产生的力量也就越小。所以电磁铁的磁性强弱与线圈的匝数有关,匝数越多,磁性越弱,匝数越少,磁性越强。

磁感应强度的单位

在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。在高斯单位制中,磁感应强度的单位是高斯(Gs ),1T=10KGs等于10的四次方高斯。

由于历史的原因,与电场强度E对应的描述磁场的基本物理量被称为磁感应强度B,而另一辅助量却被称为磁场强度H,名实不符,容易混淆。通常所谓磁场,均指的是B,B在数值上等于垂直于磁场方向长1m,电流为1A的导线所受磁场力的大小。

以上内容参考?百度百科-磁感应强度

磁铁磁性和地球磁场有关系吗

特斯拉和高斯之间的换算关系是1T=10^4G。

在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。在高斯单位制中,磁感应强度的单位是高斯(Gs ),1T=10KGs等于10的四次方高斯。

由于历史的原因,与电场强度E对应的描述磁场的基本物理量被称为磁感应强度B,而另一辅助量却被称为磁场强度H,名实不符,容易混淆。通常所谓磁场,均指的是B。

扩展资料

计算公式:

B=F/IL=F/qv=Φ/S

F:洛伦兹力或者安培力;

q:电荷量;

v:速度;

E:电场强度;

Φ(=ΔBS或BΔS,B为磁感应强度,S为面积):磁通量;

S:面积;

L:磁场中导体的长度。

定义式:F=ILB。

表达式:B=F/IL。

百度百科-特斯拉 (物理单位)

百度百科-高斯

霍尔元件测磁场的磁场单位T跟KGS有啥关系啊

铁磁性对诸如Fe、Co、Ni等物质,在室温下磁化率可达10-3数量级,称这类物质的磁性为铁磁性.

铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后,仍可保留极强的磁性.其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其H变小.

铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场.铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),在物质内部形成许多小区域–磁畴.每个磁畴大约有1015个原子.这些原子的磁矩沿同一方向排列,假设晶体内部存在很强的称为"分子场"的内场,"分子场"足以使每个磁畴自动磁化达饱和状态.这种自生的磁化强度叫自发磁化强度.由于它的存在,铁磁物质能在弱磁场下强列地磁化.因此自发磁化是铁磁物质的基本特征,也是铁磁物质和顺磁物质的区别所在.

铁磁体的铁磁性只在某一温度以下才表现出来,超过这一温度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发磁化强度变为0,铁磁性消失.这一温度称为居里点.在居里点以上,材料表现为强顺磁性,其磁化率与温度的关系服从居里–外斯定律.

地磁场地球像一块巨大的磁铁 ,地核中熔化的铁和镍产生对流,像发电机工作时一样产生电流,并产生地磁现象.地磁能保护地球免受太阳活动引起的太阳风暴的影响.

geomagnetic field

从地心至磁层顶的空间范围内的磁场.地磁学的主要研究对象.人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性.磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极.这个解释最初是英国W.吉伯于1600年提出的.吉伯所作出的地磁场来源于地球本体的假定是正确的.这已为1839年德国数学家CF高斯首次运用球谐函数分析法所证实.

地磁场是一个向量场.描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素.常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角.其中以磁偏角的观测历史为最早.在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z.

近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场.地磁场强度的单位过去通常采用伽马(γ),即10高斯.1960年决定采用特斯拉作为国际测磁单位,1高斯=10特斯拉(T),1伽马=10特斯拉=1纳特斯拉(nT),简称纳特.地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害.

地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同.基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢.变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱.

地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分.偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应.非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%.地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关.

地球变化磁场可分为平静变化和干扰变化两大类型.平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中.干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系.磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特.其他几种干扰变化主要分布在地球的极光区内.除外源场外,变化磁场还有内源场.内源场是由外源场在地球内部感应出来的电流所产生的.将高斯球谐分析用于变化磁场,可将这种内、外场区分开.根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布.这已成为地磁学的一个重要领域,叫做地球电磁感应.

地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义.

磁性和引力的关系

kGs是千高斯的意思。1T=10^4 Gs=10 kGs.

KGS:

(1). kilograms的缩写,千克、公斤的意思; 为KG(千克)的复数,英文中数量大于1的,在单位后面加S,汉语中只记作KG。

贸易中常见,用于表述货品的重量。

(2).千高斯,即1,000GS。磁场强度单位,转换为国际单位特斯拉时:1KGS=0.1T。常见于电机,电磁铁等设备的铭牌。

磁力是由于电子或者是被磁化的物体在磁场中才受的力,如果物体不在磁场中,则不会受力。 而引力不同,“万有引力”是经典中的经典。一点都没有错,只要两个(或更多)物质不是以场的形式存在,不管距离的大小,一定会互相受到引力。 磁铁的成分是铁、钴、镍等.其原子结构特殊,原子本身具有磁矩. 一般的这些矿物分子排列混乱.磁区互相影响就显不出磁性,但是在外力(如磁场)导引下分子排列方向趋向一致,就显出磁性。 磁铁只是一个通称,是泛指具有磁性的东西,实际的成分不一定包含铁。较纯的金属态的铁本身没有永久磁性,只有靠近永久磁铁才会感应产生磁性。一般的永久磁铁里面加了其他杂质元素(例如碳)来使磁性稳定下来。铁是常见的带磁性元素,但是许多其他元素具有更强的磁性,像强力磁铁很多就是铷铁硼混合而成的. 为什么不能吸引铝?好象是因为铝是抗磁性物质,不能被磁化,具体原因记不清了。 下面这段是拷贝来的,有兴趣就看看吧~ 地磁场 geomagnetic field 从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。 地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。 近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即10高斯。1960年决定采用特斯拉作为国际测磁单位,1高斯=10特斯拉(T),1伽马=10特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。 地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。 地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。 地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。 地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义