1.汽车离合器的工作原理是怎样的,请求通俗解释,谢谢。

2.永动机为什么不能永动?

3.简单了解手动变速器工作原理

汽车发动机原理动画讲解_汽车发动机原理动画

自动变速器根据汽车速度、发动机转速、动力负荷等因素自动进行升降档位,不需由驾驶者操作离合器换档,使用很方便。特别在交通比较拥挤的城区马路行驶,自动变速器体现出很好的便利性。自动变速器比手动变速器复杂得多,有很多方面不相同,但最大的区别在于控制方面。手动变速器由驾驶员操纵档位,加档或减档由人工操作,而自动变速器是由机器自动控制档位,变换档位是由液压控制装置进行的。

以一个典型的自动变速器为例,液压控制装置根据节气门(油门)开度和变速器输出轴上输送来的信号控制升降档。根据节气门开度变化,液压控制装置中的调节阀产生与加速踏板踏下量成正比的液压,该液压作为节气门开度“信号”加到液压控制装置;另外有装配在输出轴上的速控液压阀可产生与转速(车速)成正比的液压,作为车速“信号”加到液压控制装置。因此,就有节气门开度“信号”和车速“信号”,液压控制装置根据这两个“信号”自动调节变速器油量,从而控制换档时机。

也就是说在汽车驾驶中,驾驶员踏下加速踏板(油门踏板),控制节气门开度和汽车的行驶速度(变速器输出轴转速),就能自动控制变速器内的液压控制装置,液压控制装置会利用液力去控制行星齿轮系统的离合器和制动器,以改变行星齿轮的传动状态。

自动变速器的核心控制装置是液压控制装置,液压控制装置由油泵、阀体、离合器、制动器以及连接所有这些部件的液体通路所组成。关键部件是阀体,因此它是自动变速器的控制中心。阀体的作用是根据发动机和底盘传动系的负载状况(节气门开度和输出轴转速),对油泵输出到各执行机构的油压加以控制,以控制液力变矩器,控制各离合器和制动器的结合与分离实现自动换档。

以上是自动变速器的基本控制形式,如果是电子控制自动变速器,就要在上述基础上增加电磁阀,ECU(电控单元)借助电磁阀控制自动变速器工作过程。ECU输入电路接受传感器和其它装置输入的信号,对信号进行过滤处理和放大,然后转换成电信号驱动被控的电磁阀工作。因此,电子控制自动变速器就要增加节气门位置传感器、车速传感器、水温传感器、液压温度传感器、发动机转速传感器、档位开关、刹车灯开关等数字信号汇入ECU,从而使得ECU精确控制电磁阀,使换档和锁止时间准确,令汽车运行更加平稳和节省燃油。

如果你已经阅读了汽车发动机工作原理,你就能懂得汽车动力是如何产生的;如果你已经阅读了手动变速器的工作原理,你就会懂得下一步动力会传到哪里。对大多数汽车来说,差速器在其传动系中,位于驱动轮之前的最后一级。本文将阐述差速器的工作原理。

差速器有三大功用:

把发动机发出的动力传输到车轮上;

充当汽车主减速齿轮,在动力传到车轮之前将传动系的转速减下来

将动力传到车轮上,同时,允许两轮以不同的轮速转动

在本文中,你将会了解到汽车为什么需要一个差速器,它工作的方式及其优缺点。我们也将会了解到防滑差速器。

为什么需要差速器

当汽车转向时,车轮以不同的速度旋转。在下面的动画中你可以看到,在转弯时,每个车轮驶过的距离不相等,即内侧车轮比外侧车轮驶过的距离要短。因为车速等于汽车行驶的距离除以通过这段距离所花费的时间,所以行驶距离短的车轮转动的速度就慢。同时需要注意的是:前轮较之后轮,所走过的路程是不同的。

对于后轮驱动型汽车的从动轮,或前轮驱动型汽车的从动轮来说,不存在这样的问题。由于它们之间没有相互联结,它们彼此独立转动。但是两主动轮间相互是有联系的。因此一个引擎或一个变速箱可以同时带动两个车轮。如果你的车上没有差速器,两个车轮将不得不固定联结在一起,以同一转速驱动旋转。这会导致汽车转向困难。此时,为了使汽车能够转弯,一个轮胎将不得不打滑。对于现代轮胎和混凝土道路来说,要使轮胎打滑则需要很大的外力,这个力通过车桥从一个轮胎传到另一个轮胎,这样就给车桥零部件产生很大的应力。

什么是差速器

差速器就是一种将发动机输出扭矩一分为二的装置,允许转向时输出两种不同的转速。

在现代轿车或货车,包括许多四轮驱动汽车上,都能找到差速器。这些四轮驱动车的每组车轮之间都需要差速器。同样,其两前轮和两后轮之间也需要一个差速器。这是因为汽车转弯时,前轮较之后轮,走过的距离是不相同的。

部分四轮驱动车前后轮之间没有差速器。相反的,他们被固定联结在一起,以至于前后轮转向时能够以同样的平均转速转动。这就是为什么当四轮驱动系统忙碌时,这种车辆转向困难的原因。

不同车速下转弯

我们将从最简单的一类差速器——开式差速器,讲起。首先,我们需要了解一些技术:下图就是一个开式差速器部件。

当一辆轿车沿着一条路直线行驶时,两侧车轮以同一转速转动。输入小齿轮带动螺旋锥齿轮和壳体。壳体内的小齿轮都不转动,两边的齿都有效的将壳体锁住。

注意到输入小齿轮的齿比螺旋锥齿轮的齿小。如果主减速比为4.10,螺旋锥齿轮的齿数就要比输入小齿轮的齿多4.10倍。更多关于传动率的信息请参阅齿轮是如何工作的。

当一辆汽车转弯时,车轮必须以不同的转速旋转。

从上图中,你可以看到壳体内的小齿轮在车辆转向时开始转动。以此实现两侧车轮以不同的转速旋转。内侧车轮要比壳体转得慢。但外侧车轮就要转得相对快点。

在薄冰上行驶

开式差速器一般都是将相同大小的扭矩分配到两侧车轮上。有两个因素决定分配到车轮扭矩的多少:设备及牵引力。在干燥的环境、有充足的牵引力的情况下,分配到车轮的扭矩受到发动机及齿轮的限制;在牵引力较小的情况下,诸如在冰面上行驶。在这种情况下,扭矩的大小受限于车轮不至于打滑。所以,即使一辆车可以产生更大的扭矩,同样需要足够的牵引力用以将这些扭转力矩传输到地面上。如果当车轮开始打滑时,你用力睬油门,只会使车轮转得更快。

如果你曾经在冰面上开过车,你可能知道使加速变得容易的方法。那就是你不以一档起步而是二档起步,甚至是三档。因为变速器里的档位越高,传到车轮上的扭矩会变的更少。这样就会让车轮在不转的情况下加速更快。

当一个汽车主动轮在附着系数较高的路面上,而另一个主动轮却在冰面上时,会发生什么情况呢?这就是开式差速器的问题所在。

记住,开式差速器总是运用于两轮转矩相等的情况下,最大扭矩受限于最大防滑系数的限制。他并不会给在冰面上的车轮以更大的扭矩。而且牵引力好的那个车轮仅获得很少量的扭矩。此时,你的车就不能正常运行。

越野行驶

除此之外,开式差速器可能在你越野的时候给你带来麻烦。如果你有一辆前后都有差速器的四轮驱动车或越野车,你可能被卡住。

现在,记得——就如我们之前已经提到过的,开式差速器一般都是给两轮传递相等的扭矩。如果一侧前轮及一侧后轮陷入地中,两轮只能在空无助的旋转,汽车根本无法移动。

这类问题只能通过防滑式差速器(LSD)来解决,有时也叫做“positraction”。防滑差速器使用多种机械技术来实现常规差速器使车辆转弯的行为。当一侧车轮打滑时,提供更多的扭矩给不打滑的轮子。

汽车离合器的工作原理是怎样的,请求通俗解释,谢谢。

自动变速器根据汽车速度、发动机转速、动力负荷等因素自动进行升降档位,不需由驾驶者操作离合器换档,使用很方便。特别在交通比较拥挤的城区马路行驶,自动变速器体现出很好的便利性。自动变速器比手动变速器复杂得多,有很多方面不相同,但最大的区别在于控制方面。手动变速器由驾驶员操纵档位,加档或减档由人工操作,而自动变速器是由机器自动控制档位,变换档位是由液压控制装置进行的。

以一个典型的自动变速器为例,液压控制装置根据节气门(油门)开度和变速器输出轴上输送来的信号控制升降档。根据节气门开度变化,液压控制装置中的调节阀产生与加速踏板踏下量成正比的液压,该液压作为节气门开度“信号”加到液压控制装置;另外有装配在输出轴上的速控液压阀可产生与转速(车速)成正比的液压,作为车速“信号”加到液压控制装置。因此,就有节气门开度“信号”和车速“信号”,液压控制装置根据这两个“信号”自动调节变速器油量,从而控制换档时机。

也就是说在汽车驾驶中,驾驶员踏下加速踏板(油门踏板),控制节气门开度和汽车的行驶速度(变速器输出轴转速),就能自动控制变速器内的液压控制装置,液压控制装置会利用液力去控制行星齿轮系统的离合器和制动器,以改变行星齿轮的传动状态。

自动变速器的核心控制装置是液压控制装置,液压控制装置由油泵、阀体、离合器、制动器以及连接所有这些部件的液体通路所组成。关键部件是阀体,因此它是自动变速器的控制中心。阀体的作用是根据发动机和底盘传动系的负载状况(节气门开度和输出轴转速),对油泵输出到各执行机构的油压加以控制,以控制液力变矩器,控制各离合器和制动器的结合与分离实现自动换档。

以上是自动变速器的基本控制形式,如果是电子控制自动变速器,就要在上述基础上增加电磁阀,ECU(电控单元)借助电磁阀控制自动变速器工作过程。ECU输入电路接受传感器和其它装置输入的信号,对信号进行过滤处理和放大,然后转换成电信号驱动被控的电磁阀工作。因此,电子控制自动变速器就要增加节气门位置传感器、车速传感器、水温传感器、液压温度传感器、发动机转速传感器、档位开关、刹车灯开关等数字信号汇入ECU,从而使得ECU精确控制电磁阀,使换档和锁止时间准确,令汽车运行更加平稳和节省燃油

永动机为什么不能永动?

1、离合器分为三个工作状态,即踩下离合器的不连动,不踩下离合器的全连动,以及部分踩下离合器的半联动。当车辆起步时,司机踩下离合器,离合器踏板的运动拉动压盘向后靠,也就是压盘与摩擦片分离,此时压盘与飞轮完全不接触,也就不存在相对摩擦。当车辆在正常行驶时,压盘是紧紧挤靠在飞轮的摩擦片上的,此时压盘与摩擦片之间的摩擦力最大,输入轴和输出轴之间保持相对静摩擦,二者转速相同。

2、最后一种是离合器的半连动状态,压盘与摩擦片的摩擦力小于全连动状态。此时,离合器压盘与飞轮上的摩擦片之间是滑动摩擦状态,飞轮的转速大于输出轴的转速,从飞轮传输出来的动力部分传递给变速箱。这种状态下,发动机与驱动轮之间相当于一种软连接状态。

3、一般来说,离合器是在车辆起步和换挡的时候发挥作用,此时变速箱的一轴和二轴之间存在转速差,必须将发动机的动力与一轴切开以后,同步器才能很好的将一轴的转速保持与二轴同步。挡位挂进以后,再通过离合器将一轴与发动机动力结合,使动力继续得以传输。

4、在离合器中,还有一个不可或缺的缓冲装置。它由两个类似于飞轮的圆盘对在一起,在圆盘上打有矩形凹槽,在凹槽内布置弹簧,在遇到激烈的冲击时,两个圆盘之间的弹簧相互发生弹性作用,缓冲外界刺激,有效的保护了发动机和离合器。

扩展资料

1、离合器安装前必须清洗干净,去除防锈脂及杂物。

2、离合器可同轴安装,也可以分轴安装,轴向必须固定,主动部分与从动部分均不允许有轴向窜动,分轴安装时,主动部分与从动部分轴之间同轴度应不大于0.lmm。

3、湿式电磁离合器工作时,必须在摩擦片间加润滑油,润滑方式用:

(1)、分浇油润滑。

(2)、油浴润滑,其浸入油中的部分约为离合器体积的5倍。

(3)、轴心供油润滑,在高速和高频动作时应用轴心供油方法。

4、牙嵌式电磁离合器安装时,必须保证端面齿之间有一定间隙,使空转时无磨齿现象,但不得大于δ值。

百度百科-离合器

简单了解手动变速器工作原理

永动机违反能量守恒定律。

永动机是一类所谓不需外界输入能源、能量或在仅有一个热源的条件下便能够不断运动并且对外做功的机械。不消耗能量而能永远对外做功的机器,它违反了能量守恒定律,故称为“第一类永动机”。

在没有温度差的情况下,从自然界中的海水或空气中不断吸取热量而使之连续地转变为机械能的机器,它违反了热力学第二定律,故称为“第二类永动机”。这两类永动机是违反当前客观科学规律的概念,是不能够被制造出来的。

扩展资料:

永动机的分类:

1、机械类永动机:妄图依靠机械内循环,对启动能量进行增益,以试图突破能量守恒。并依靠能量增益,使增益的能量输出,并将输出能分化为两部分,一部分给机械提供动力。另一部分对外做功。

2、电/磁动机永动机:属于永动机范畴,但因不具备工业实用性,被称为玩具。概念,设概念,磁铁与电磁场互动,使得能量突破能量守恒,磁动机获得了输出大于输入。但实际上实验显示,磁动机终究会因为消磁而停止。

3、热循环永动机:试图突破热一,热二,但终究失败,温度平衡点与温度不可叠加和转化消耗上,无法在内部环境中进行百分百转化。

2017年证实了时间晶体的存在,其原子运动无需任何外界能量来维持,符合以前物理学界认为不可能存在的“永动机”,但其能量在加入额外的能量前,不可能被利用。如果时间晶体的熵不够高,晶体可能会四散成粒子,因为后者才有更高的熵值,虽然这可能需要很久的时间。?

参考资料:

百度百科-永动机

为什么变速箱可以调节发动机输出的扭矩和转速?其实还有齿轮和杠杆的原理。下面我们就来简单了解一下手动挡的工作原理,这不仅可以提高我们的知识,也可以给手动挡的保养带来很大的帮助。手动变速器的传动原理手动变速器的工作原理是利用不同齿数的齿轮啮合传动的组合来实现转速和扭矩的变化。设一对啮合的齿轮,小齿轮的齿数为Z1=20,大齿轮的齿数为Z2=40。然后,在同样的时间里,小齿轮转一圈,大齿轮只转1/2圈。如果小齿轮是主动齿轮,它被大齿轮输出时速度会降低;如果大齿轮是主动齿轮,那么小齿轮输出时,它的速度就会增加,这就是齿轮传动的原理。根据齿轮传动原理,一对不同齿数的齿轮啮合时可以变速,因为齿轮是一个一个啮合的。同样的时间,过去啮合的两个齿轮的齿数必须相等,两个齿轮的转速与齿轮的齿数成反比。手动变速器的换挡原理根据齿轮传动原理,一对啮合的外齿轮反向旋转,每经过一个传动副,其轴就改变方向。双轴变速器在输入轴和输出轴之间装有一个倒档和一个倒档,可以改变方向。另一方面,在三轴变速器的中间轴和输出轴之间安装倒档齿轮轴和倒档齿轮,使输出N轴和输入I轴可以如图所示反方向转动,从而实现汽车的倒车行驶。我们把传动比小的挡位叫高档,传动比大的挡位叫低档(变速挡的换挡叫换挡,从低档到高档的换挡叫升档或升档,反之亦然。手动变速器的工作原理是通过换挡杆,切换中间轴上的主动齿轮,通过不同的齿轮组合与动力输出轴结合,来改变驱动轮的扭矩和转速。下面是手动变速器(2档)的简化结构图。发动机的动力输入轴通过中间轴与动力输出轴间接连接。如上图所示,中间轴的两个齿轮(红色)和动力输出轴的两个齿轮(蓝色)随着发动机输出一起转动。但没有同步器(紫色)的啮合,两个齿轮(蓝色)只能在动力输出轴上空转(即不会带动输出轴转动)。图中同步器处于中间状态,相当于变速器处于空挡。当换挡杆向左移动时,同步器向右移动与齿轮啮合(如上图所示),发动机动力通过中间轴的齿轮传递给动力输出轴。一般手动挡有几个挡位(上图所示的5挡手动挡),可以理解为在原有基础上增加几组挡位。其实原理是一样的。挂一档时,同步器(一档和二档)实际上是向左移动,与一档从动齿轮(图中)啮合,动力传递到输出轴。细心的朋友会发现,R档(倒档)的主动齿轮和从动齿轮之间夹着一个中间齿轮,用来实现汽车的倒车行驶。传输原理模型分析变速箱里有很多不同的档位。通过组合不同大小的齿轮,可以实现发动机扭矩和转速的调节。低扭矩可以换高转速,低转速可以换高扭矩。输入轴(绿色)通过离合器与发动机相连,轴和轴上的齿轮是一个部件。而轴齿轮(红色)称为中间轴。它们一起旋转。轴的转动(绿色)通过啮合的齿轮带动中间轴的转动,然后中间轴可以传递发动机的动力。轴(**)是花键轴,直接连接驱动轴,通过差速器驱动汽车。车轮将随着花键轴旋转。齿轮(蓝色)在花键轴上自由旋转。当齿轮(蓝色)和花键轴啮合时,齿轮会带动花键轴转动。齿轮(蓝色)和花键轴通过套筒连接,套筒可以随花键轴转动,同时可以在花键轴上自由左右滑动与齿轮(蓝色)啮合。变速器换挡时,特别是从高档到低档,很容易产生轮齿或花键齿之间的冲击。为了避免齿间的冲击,同步器安装在换档装置中。同步是指在套筒上的齿与齿轮(蓝色)啮合之前,发生摩擦接触,齿轮(蓝色)上的锥形突起刚好卡入套筒的锥形槽口。它们之间的摩擦力使套筒和齿轮(蓝色)同步,套筒向外滑动,与齿轮啮合。以上是手动变速器的基本工作原理。不同的制造商生产变速器的方式不同,但基本原理是相同的。相关文章手动传输工作原理动画